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The general systematic procedure is described for determining the magnetic space group (Shubnikov 
group) of a crystal from the magnetic point symmetry found from nuclear magnetic resonance data 
(Heesch, standard representation) and the crystallographic structure. The aspect group, which is the 
observed n.m.r, symmetry, is therefore defined and the Heesch groups which are related by the time 
inversion operation for magnetic moments to each aspect group are derived. The proposed method 
is demonstrated with a few specific examples. The difference between the concept of a magnetic point 
group and the concept of a Heesch group is clarified. 

In a magnetically ordered crystal the three axial vector 
fields B, H and M, which are related by B =/t0(H + M) 
all exhibit repetition patterns given by the magnetic 
space group (Shubnikov group) of the crystal (Ope- 
chowski & Guccione, 1965; Koptsik, 1966). Each sym- 
metry element of such a group is specified by giving 
two rotation matrices ~0~ and 0~, and a translation ~i. 
Through the relation 

r i = ~ i ,  r0+x i ,  (1) 

the quantities ~0~ and x~ specify the position vectors ri 
of a set of points at which B, H and M have the same 
magnitudes as at the point whose position vector is r0. 
The orientation of the axial vectors at ri and r0 is re- 
lated by 

B(ri)=0~. B(r0), (2) 

with similar equations for H and M. The matrices ~0~ 
and 0~ are connected by (Opechowski & Guccione, 
1965) 

0 i = e l ~ 0 i ,  (3) 

where fi~ is the value of the determinant of q~ and the 
signature 8t equals + 1 for the so-called unprimed, un- 
coloured, or ordinary elements and equals - 1  for the 
so-called primed, coloured or anti-elements. The quan- 
tities ~0~ and xi constitute the elements (~0~l~i) of an 
ordinary space group which is often the chemical space 
group of the crystal or one of its subgroups. The 
matrix ~01 induces a proper or improper rotation and 
the translation x~ is the vector sum of translations in- 
herent in the elements (as in glide planes or screw axes), 
displacements which locate the elements in the unit cell, 
and translations which are formed from the basis vec- 
tors of the unit cell of the space group to which (~0i[xi) 
belongs. 
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Consider a nuclear magnetic resonance (n.m.r.) ex- 
periment carried out on a nucleus located at a site 
whose position vector is r0. If the elements (~0~[xl) con- 
stitute the elements of the chemical space group of the 
crystal, or one of its subgroups, then the sites whose 
position vectors r~ are related to r0 by equation (1) will 
be occupied by similar nuclei. The fields B(rd at these 
sites can be directly measured by the n.m.r, experiment 
and will be found to differ only in direction but not 
in magnitude. Consider the array of axial vectors B~ 
formed by translating each B(rd to a common origin. 
The symmetry of the array may be represented by one 
of the 122 Heesch groups (Heesch, 1930). The concept 
of Heesch group used here and first introduced by 
Riedel & Spence (1960) corresponds to the 'standard 
representation' of Opechowski & Guccione (1965). The 
elements of this group will be represented by the ma- 
trices 01. The representation is, however, an unfaithful 
one (Lomont, 1959) and thus the experimental deter- 
mination of the 0~ by n.m.r, does not uniquely deter- 
mine the Heesch group Gh. In fact, there are only 32 
distinguishable sets of 0~ corresponding to the 122 
Heesch groups. The 32 sets are isomorphous with the 
32 ordinary point groups. Thus Neumann's principle 
remains intact (Nye, 1957). Let us call each of the 32 
observable sets of 0~ an aspect group Ga. We may 
think of the aspect group of a given magnetically 
ordered crystal as being the point group under which 
the B~ would transform if they were polar vectors 
rather than axial vectors as they actually are. The 
aspect group is easily determined from n.m.r, data. 

We prefer to consider the fundamental internal 
magnetic field as B. B is in turn generated by the dis- 
tribution of magnetization M which arises from the 
spin and orbital angular momentum. The alternate 
point of view which considers the internal field as H 
(see e.g. Abragam, 1961) is more conventional but in 
this ease it is most convenient to consider the field as 
arising from a set of currents which can be related to 
the spin and orbital angular momentum. Our prefer- 
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ence for the first point  of  view stems f rom the fact 
tha t  in the neut ron  diffraction experiment it is easy to 
conceive of  measuring the distr ibution of  magnetiza- 
t ion. 

The possible Heesch groups corresponding to each 
aspect group can be found in the following straight- 
forward but  rather  tedious way. The set of  elements 
in a given G~ is enumerated.  In the set each element 
arising f rom a ro ta t ion  or ro ta tory  inversion axis of  
order n is replaced with a corresponding element 
arising f rom a ro ta t ion  axis of  order n. Thus, for 
example, bo th  the elements arising f rom 2 and m = 2  
are to be replaced with the elements arising f rom 2 
(Riedel & Spence, 1960). Elements arising f rom anti- 
ro ta t ion  and ant i - ro ta tory  inversion axes of  order n 
are replaced with corresponding elements arising f rom 
ordinary ro ta tory  inversion axes of  order n. Thus, the 
elements generated by 2' amd m ' = 2 '  are to be re- 
placed by corresponding elements of  2 = m .  The col- 
lection of  distinct elements which remains after all the 
replacements have been made constitute the elements 
of  Ga. Consider,  for example, G n = 2 ' / m ' ,  whose ele- 
ments are 1, 2', m', T. The corresponding set of  ele- 
ments after replacements are 1, 2, 2, 1, and Ga is there- 
fore just  2 =  m. In Table 1 we give the Heesch groups 
corresponding to each aspect group. 

Table 1. Heesch groups and 
corresponding local f i e ld  symmetr ies  

Aspect group Heesch group Nn Na 

Triclinic system 
1 1 1 1 1 
2 T 2 1 
3 T 11' 2 2 
4 ]'1' 4 2 
5 1' 2 2 

Monoclinic system 
6 m 2' 2 2 
7 m' 2 2 
8 2"]m" 4 2 
9 2 2 2 2 

10 m 2 2 
11 2/m 4 2 
12 2]m 21' 4 4 
13 ml'  4 4 
14 2]ml" 8 4 
15 2/m" 4 4 
16 2"]m 4 4 

Orthorhombic system 
17 mm2 m" m'2 4 4 
18 ram'2" 4 4 
19 22'2' 4 4 
20 mm" m" 8 4 
21 222 222 4 4 
22 mm2 4 4 
23 mmm 8 4 
24 mmm 2221' 8 8 
25 ram21" 8 8 
26 mmml" 16 8 
27 m" m" m" 8 8 
28 m" mm 8 8 

Table 1 (cont.) 

Aspect group Heesch group 

Tetragonal system 
29 4 4 
30 2[ 
31 4/m 
32 2[ 4' 
33 2[' 
34 4"/m 
35 4/m 41' 
36 211' 
37 4/m1" 
38 4/m' 
39 4"/m" 
40 212tu 4'2'2 
41 4" mm" 
42 2['2m' 
43 212'm 
44 4/mmm" 
45 4mm 42'2' 
46 4m'm" 
47 42'm' 
48 4/mm' m' 
49 422 422 
50 4mm 
51 212m 
52 4/mmm 
53 4]mmm 4221' 
54 4mml " 
55 212m1' 
56 4]mmml" 
57 4/mmm 
58 4/m'mm 
59 4'/m'mm 

Trigonal system 
60 3 3 
61 
62 3 31' 
63 31' 
64 ~' 
65 3m 32' 
66 3m' 
67 ~gm' 
68 32 32 
69 3m 
70 ~m 
71 ~m 321' 
72 3ml' 
73 ~ml' 
74 ~'m 
75 ~'m' 

Hexagonal system 
76 6 6 
77 
78 6/m 
79 ~ 6' 
80 ~;' 
81 6/m 
82 6]m 61' 
83 ~1' 
84 6/m1" 
85 6/m 
86 6/m 
87 622 622 
88 6ram 
89 ~m2 
90 6/mmm 
91 i~2m i~'m'2 
92 ~'m2' 

Nh 

4 
4 
8 
4 
4 
8 
8 
8 

16 
8 
8 
8 
8 
8 
8 

16 
8 
8 
8 

16 
8 
8 
8 

16 
16 
16 
16 
32 
16 
16 
16 

3 
6 
6 

12 
6 
6 
6 

12 
6 
6 

12 
12 
12 
24 
12 
12 

6 
6 

12 
6 
6 

12 
12 
12 
24 
12 
12 
12 
12 
12 
24 
12 
12 

Na 

4 
4 
4 
4 
4 
4 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 
8 

16 
16 
16 
16 
16 
16 
16 

3 
3 
6 
6 
6 
6 
6 
6 
6 
6 
6 

12 
12 
12 
12 
12 

6 
6 
6 
6 
6 
6 

12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
12 
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Table 1 (cont.) 

Aspect group Heesch group N~ Na 
Hexagonal system 
93 6'2'2 12 12 
94 6mm 12 12 
95 6"/mmm" 24 12 
96 6mm 62'2' 12 12 
97 6mm 12 12 
98 ~m'2' 12 12 
99 6/mm'm" 24 12 

100 6/mmm 6'/mm'm" 24 24 
101 6'/mmm 24 24 
102 6"/mm'm" 24 24 
103 6221' 24 24 
104 6mml' 24 24 
105 ~m21' 24 24 
106 6/mmml" 48 24 

Cubic system 
107 23 23 12 12 
108 m3 24 12 
109 m3 231' 24 24 
110 m31' 48 24 
111 m3 24 24 
112 432 432 24 24 
113 213m 24 24 
114 m3m 48 24 
115 ~3m ~m3 24 24 
116 432 24 24 
117 m3m 48 24 
118 m3m 4321' 48 48 
119 ;g3ml' 48 48 
120 m3ml" 96 48 
121 m3m 48 48 
122 m3m 48 48 

Let Na be the number of elements in a given Ga and 
Nh the number of elements in a G~ belonging to the 
given Ga. Na is either equal to Nh/2 or equal to N~, 
depending on whether G~ does or does not contain the 
inversion T. The number Na is experimentally just the 
number of local fields having the same field magnitude, 
provided the fields have general orientations. Let Nn 
be the number of equivalent nuclei in the chemical unit 
cell and let NI be the number of observed distinct local 
field magnitudes. The ratio Nn/Ns" is equal to Nh/2 or 
N~ depending on whether Gn does or does not contain 
the anti-identity 1'. Combining the previous ideas we 
have three cases: 

(1) Na=½Nn/NI . . .  Gh contains T but not 1 ' ,  
(2) N~=2Nn/NI  . . .  Gn contains 1' but not T,  
(3) N~= Nn/NI . . .  Ga contains both T and 1', 

or does not contain 
either T or 1 ' .  

For example, consider the mineral azurite (Riedel & 
Spence, 1960), Cu3(CO3)2(OH)2, which becomes anti- 
ferromagnetically ordered below 1.86 °K. One finds ex- 
perimentally Ga = 2/m (hence Na = 4) and N I =  2. There 
are two molecular units in the chemical unit cell (hence 
Nn=4) .  Thus, Na=2Nn/Nf ,  and Gh must contain 1' 
but not T. Referring to Table 1, one finds that of the 
five Gh permitted by Ga=2/m, only G~=21'  and 
Gh=ml '  are allowed. As a second example, consider 

CoC12[CS(NH2)2] 4 whose N6el temperature is ~ 1 °K 
(Au, Cowen, Spence & Van Till, 1965). There are four 
molecular units in the chemical unit cell and therefore 
Nn=64.  Experimentally, one finds Ga=4/m (hence 
Na= 8) and Ny= 8. Hence, Na=Nn/N~" and the per- 
mitted Gh must either contain both T and 1', or it 
must contain neither 1 nor 1'. From Table 1, one finds 
that the first possibility allows Gn=4/ml '  and the 
second allows 4/m' and 4'/m'. 

After finding a set of permitted Gh one must restore 
the translations to obtain the permitted magnetic space 
groups. If the Gh does not contain 1', one has only 
to consider possible non-primitive translations which 
convert axes into screw axes and mirror planes into 
glide planes. If Gh contains 1', the magnetic unit cell 
is a multiple of the chemical unit cell. In either case, 
the translations which are restored must be selected 
so that they in no way modify the positions of nuclei 
as given by the chemical space group. Opechowski & 
Guccione (1965) have given a convenient listing of the 
magnetic space groups in which all magnetic space 
groups compatible with a given chemic 1 space group 
are listed together. Starting with such a list, one has 
only to eliminate those magnetic space groups which 
do not reduce to the experimentally permitted Heesch 
groups when the non-primitive translations are re- 
moved or the extended magnetic cell is indicated by 
1' in the Heesch group symbol. Finally, when this 
process is completed, there will generally remain a 
small set of magnetic space groups which satisfy all 
the criteria for acceptability we have mentioned. The 
final decision as to the correct magnetic space group 
must be made by computing the magnitudes of the 
internal fields at the sites of the probe for each of the 
permitted groups and comparing them with the ex- 
perimental values. This process also involves the 
knowledge of the direction of magnetization which 
can be obtained from magnetic susceptibility measure- 
ments. An example of the results of such computations 
can be found in the article by Spence & Nagarajan 
(1966). 

Finally, we wish to clarify the difference between the 
concept of a magnetic point group as defined by Ope- 
chowski & Guccione (1965) and the Heesch groups 
used here. Formally, this difference amounts to the fact 
that the magnetic point group as defined by Opechow- 
ski & Guccione is obtained by removing all transla- 
tions from the magnetic space group while in the 
Heesch groups employed here the anti-translations are 
carried into the symbol as the anti-identity 1'. The 
point groups of two magnetic space groups one of which 
contains anti-translations, and the other of which does 
not, may be the same, but the Heesch group symbol 
will clearly indicate the fact that they stem from dif- 
ferent unit cells. There are only 90 magnetic point 
groups. In the language of color groups, these would 
be called black-white groups. The remaining 32 groups 
added to this set to make the 122 Heesch groups would 
be called grey groups. Their use in the present type 
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of discussion seems first to have been introduced by 
Donnay & Donnay (1959). Their use in the same con- 
nexion was also suggested by Landau & Lifshitz (1958). 
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The Influence of Thermal Parameters on Electron Density Maps 
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Accurate formulae for the convolution of atomic one-electron density functions onto anisotropic Gaus- 
sian distribution functions are presented. Theoretical time average electron density functions for some 
first row atoms at various degrees of resolution are analyzed by variation of Debye-Waller factors. 
The calculations show that for present day precision in thermal parameters Fourier difference maps 
suffer an unmanageable bias near the time-average nuclear positions. Residual densities at distances 
greater than 0.4 A from time-average nuclear positions are affected only marginally by errors in atomic 
thermal parameters. The upper limit in sin 0/2 for proper reconstruction of valence densities is also 
studied. For the room temperature case, 0.8 A-I in sin 0/2 is adequate; for low temperature work 
(,,, - 180°(2) 1-2/~-1 is more appropriate. 

Introduction 

Electron density maps evaluated by Fourier syntheses 
using X-ray diffraction structure factors, Fo's, can 
present a variety of distortions as a result of experi- 
mental limitations. In the difference Fourier technique, 
parametric errors in the calculated structure factors, 
Fds, must also be considered. A recent study on bonded 
electron distributions in organic molecular crystals 
(O'Connell, Rae & Maslen, 1966) has prompted the 
author to investigate some errors inherent in the dif- 
ference Fourier syntheses of X-ray diffraction data. It 
is important that these effects be reviewed and studied 
in quantitative detail, so that one can make meaningful 
interpretations of electron density maps. In the present 
paper we shall assume that there is an adequate macro- 
scopic theory for the determination of structure factors 
from X-ray diffraction intensities of real crystals (cf. 
Zachariasen, 1967). We shall also assume that the 
observed structure factors can be phased by conven- 
tional structure factor calculations (this restricts us 
primarily to centric structures). We will thus confine 
ourselves to the problems of series termination error 

and parametric errors in the difference Fourier syn- 
thesis technique. 

If, in a Fourier difference synthesis, only the (Is) 2 
density is subtracted out, we shall call the residual 
density a valence electron density map. For a molecular 
crystal, comprised of first row atoms, such a density 
map should be of interest to chemists and is hopefully 
interpretable in terms of 2s and 2p orbital product 
density functions. The influence of thermal motion on 
electron densities is an important effect to be con- 
sidered. 

In an analysis of the valence electron density 0v, 
however, the error must be assessed from the corre- 
sponding errors in/5o and Pc, the respective incomplete 
Fourier series of the observed and calculated structure 
factors. Thus 

implies 
AF~=Fo-Fc 

and any variation in Ov is 

A C 24A - 2 


